腾讯1300场NBA直播背后的技术力量
但在体育大型的赛事直播,尤其是个人主播的时候,体现的优势会更加明显,通过这些技术,我记得有一个有意思的问题.当时有一个同学说,这个东西很难吗?我说其实感觉不是特别难,概念一说很清楚,改造的话估计一两个星期就可以了. 他说,为什么不难的技术,其他的直播或者行业做不到呢?我当时回答的是,我觉得做技术或者海量的话其实应该有两个点,第一个是单纯一个点解决起来是不困难的,困难的是把一个技术体系,针对于这个业务,这个方面遇到的各种问题解决. 我们解决了 CDN 问题,解决了纯属问题,在 CDN 上又直接调度问题,解决了流畅性上海量冲击的问题,再加上解决了打开画面快速的问题,实际上是有很多的点去解决的.把整个点再复盘一下,才慢慢形成一套方法,并不是一两个点能够来解决. 所以海量技术并不是容易解决,而是过程中不放弃,把每个技术点做到极致,而且是非常适合自己的业务体验的极致. 7、面对海量监控问题的挑战7.1 监控的目的最后说一下关于监控的问题,全流程监控是为了发现质量问题,比如说基础监控是最底层的,包括 CPU、内存、网卡、IO硬件,还有网络,因为现在都是互联网服务,网络监控是必须的,比如说点到点 ping 的延时,udp探测,链路分段检测,慢速这些监控,另外就是播放,播放属于业务层,这个时候就需要有包括对播放量、打开时间、卡顿时长、卡顿率和失败率,包括一些码流去监控. 另外针对直播的业务属性,更加偏向业务的监控,比如说直播流,比如说黑屏能不能监控,用户看到的画面是不是屏幕已经变黑了,或者可能是马赛克,可能有慢速或者丢包导致的情况,另外就是静音,直播过程中用户是不是听不到画面了,或者爆音,用户听到刺耳的声音,还有转码这些过程.这是一个立体化的模型,所有这些点聚合起来的时候,前面我提到各种数据上报,包括后台日志. 7.2 监控的挑战-日志分析效率日志整体一天是2千亿条,未来可能会超过5千亿条,这么大的量半天以后拿到结果或者一天后再拿到结果,黄花菜都凉了,怎么办?我们需要的是分钟级的. 传统的方式已经不再适应需求,现在面临的是每天千亿的数据,每条可能有一百个维度,数据量每天超过100,我们还需要有一个秒级的响应,要求打开的速度是10秒钟响应,延迟是30秒.这时候我们就要引入新的技术,面向分析,面向搜索的技术,去推进我们在监控领域面临的数据量的挑战. 7.3解决方案-大数据处理
(编辑:衡阳站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |