阿里巴巴机器智能团队的三年工作总结
在业务支持过程中我们遇到的第三个问题是集成化,产品化问题。除了手机类场景外,其他线下业务均需要额外的硬件平台作为支撑。在早先时候,我们更多的是依赖第三方提供的硬件设备,这时候成本,稳定性,可扩展性成为制约线下项目拓展的几个主要问题。为了解决这些问题,我们根据以往的项目经验,对硬件设备进行归纳,沉淀出两类比较通用的线下产品化方案:智能盒子和一体化相机。每类产品均包含不同型号,以适应不同需求的场景。
我们提供的第一个方案为智能盒子方案。我们可以简单的把智能盒子当作一个适合于中小型场景的边缘服务器。盒子本身提供了多种接口,可以外接 usb/ip 相机,语音模块等传感器。直接本地部署,数据安全性高。我们针对业务特点提供了高低两个版本的智能盒子。其中,高端版本采用阿里巴巴自研的边缘计算产品 Alibaba Edge。除了完善的硬件设计和高效的推理框架,该盒子还包含完善的编译器支持,具有非常好的易用性。低端版本则为纯 ARM 的盒子。下面表格给出这两种盒子在性能,成本和适用场景的一个对比。 在这里我们着重介绍一下阿里巴巴自研的边缘计算产品 Alibaba Edge,该产品除了具有高达 3TGFlops 的 AI 计算能力外,相对边缘 GPU 方案有大幅的价格优势,同时具有云端一体化部署功能,产品平台化,可快速上线,支持大规模运维。
在下面的表格中,我们对比了 LRSSD300+MobileNetV2 在不同硬件设备上的运行时间,希望可以给大家一个更直观的认识。
我们提供的另一个集成方案为一体化相机。一体化相机特别适合云+端的部署模式:线下做相对比较简单的处理功能,云端则深度处理线下传回的信息,达到节约带宽,降低云成本的作用。同时,一体化相机具有方便部署,批量化生产后成本优势高的特点。目前一体化相机已经作为一个重要的载体形式被应用到我们所承接的对集团外合作项目中。 业务合作 在过去的 2 年间,我们尝试过多种不同的业务模式。在这里我们会列出主要几个不同形式的实例。
在菜鸟未来园区项目中,我们主要负责基础视觉类算法的输出,由菜鸟智慧园区团队同学负责业务算法和工程服务研发工作。经过半年的共同努力,我们先后完成了离岗睡岗检测,消防通道异常检测,车位占用检测,行人越界检测,入口计数检测等多个功能。 在项目合作的过程中,我们发现计算单元成本高是制约算法大范围推广的一个主要原因。为了解决这个问题,我们联合了服务器研发团队,开发出一版定制化软硬件解决方案:该方案的硬件平台为我们在上文中提到的边缘计算产品 Alibaba Edge,同时配备特别定制的高效模型结构和自研的快速检测算法。新版方案在检测精度几乎无损的情况下,推理速度提升了 4-5 倍,成本相比边缘 GPU 方案下降了 1/2。
我们协助阿里集团不同业务同学完成对已有算法模型的量化瘦身与加速工作。例如:手机端 OCR 识别、手机端物体检测、手淘实人认证和刷脸登录/验证、菜鸟自提柜、阿里体育赛事刷脸入场、神州鹰人脸识别云相册等。 总结与展望 经过近两年的努力,机器智能技术实验室线下智能团队深耕线下智能领域。 算法方面:我们在低比特量化、稀疏化、软硬件协同设计、轻量级网络设计、端上目标检测等多个方面取得了一定的积累,多项指标达到了业内最佳水平。 工程方面:我们积累出了一套高灵活性,高数据安全性的训练工具 ; 并在合作伙伴的帮助下,在 ARM,FPGA,GPU 等多个平台下达到了业内最佳的推理性能。 产品化方面:我们与合作伙伴一起,研发出适合于不同业务场景的智能盒子与一体化相机。 最后,我们很幸运可以在集团内外多个不同形式的业务场景内打磨我们的技术。
(编辑:衡阳站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |