数据清洗预处理入门完整指南
发布时间:2019-03-03 00:10:42 所属栏目:教程 来源:机器之心编译
导读:数据预处理是建立机器学习模型的第一步(也很可能是最重要的一步),对最终结果有决定性的作用:如果你的数据集没有完成数据清洗和预处理,那么你的模型很可能也不会有效就是这么简单。 人们通常认为,数据预处理是一个非常枯燥的部分。但它就是「做好准备」
多尝试一些不同的填充策略。也许在某些项目中,你会发现,使用缺失值所在列的中位数或众数来填充缺失值会更加合理。填充策略之类的决策看似细微,但其实意义重大。因为流行通用的方法并不一定就是正确的选择,对于模型而言,均值也不一定是最优的缺失填充选择。 毕竟,几乎所有正阅读本文的人,都有高于平均水平的手臂数。 图:Matthew Henry 发布于 Unsplash 如果包含属性数据,会怎么样呢? (编辑:衡阳站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |