加入收藏 | 设为首页 | 会员中心 | 我要投稿 衡阳站长网 (https://www.0734zz.cn/)- 数据集成、设备管理、备份、数据加密、智能搜索!
当前位置: 首页 > 运营中心 > 交互 > 正文

Java内存模型的深入理解

发布时间:2021-01-01 11:36:25 所属栏目:交互 来源:网络整理
导读:h3 id="基础"基础 h4 id="并发编程的模型分类"并发编程的模型分类 在并发编程需要处理的两个关键问题是:线程之间如何通信?和?线程之间如何同步。 通信?是指线程之间以何种机制来交换信息。在命令式编程中,线程之间的通信机制有两种:共享内存?和?消息传递
副标题[/!--empirenews.page--]

<h3 id="基础">基础
<h4 id="并发编程的模型分类">并发编程的模型分类

在并发编程需要处理的两个关键问题是:线程之间如何通信?和?线程之间如何同步。

通信?是指线程之间以何种机制来交换信息。在命令式编程中,线程之间的通信机制有两种:共享内存?和?消息传递。

在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信。

在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信。

同步?是指程序用于控制不同线程之间操作发生相对顺序的机制。

在共享内存的并发模型里,同步是显式进行的。程序员必须显式指定某个方法或某段代码需要在线程之间互斥执行。

在消息传递的并发模型里,由于消息的发送必须在消息的接收之前,因此同步是隐式进行的。

Java 的并发采用的是共享内存模型,Java 线程之间的通信总是隐式进行,整个通信过程对程序员完全透明。

在 Java 中,所有实例域、静态域 和 数组元素存储在堆内存中,堆内存在线程之间共享。局部变量、方法定义参数 和 异常处理器参数 不会在线程之间共享,它们不会有内存可见性问题,也不受内存模型的影响。

Java 线程之间的通信由 Java 内存模型(JMM)控制。JMM 决定了一个线程对共享变量的写入何时对另一个线程可见。从抽象的角度来看,JMM 定义了线程与主内存之间的抽象关系:线程之间的共享变量存储在主内存中,每一个线程都有一个自己私有的本地内存,本地内存中存储了该变量以读/写共享变量的副本。本地内存是 JMM 的一个抽象概念,并不真实存在。

JMM 抽象示意图:

jmm

从上图来看,如果线程 A 和线程 B 要通信的话,要如下两个步骤:

1、线程 A 需要将本地内存 A 中的共享变量副本刷新到主内存去

2、线程 B 去主内存读取线程 A 之前已更新过的共享变量

步骤示意图:

tongxin

举个例子:

本地内存 A 和 B 有主内存共享变量 X 的副本。假设一开始时,这三个内存中 X 的值都是 0。线程 A 正执行时,把更新后的 X 值(假设为 1)临时存放在自己的本地内存 A 中。当线程 A 和 B 需要通信时,线程 A 首先会把自己本地内存 A 中修改后的 X 值刷新到主内存去,此时主内存中的 X 值变为了 1。随后,线程 B 到主内存中读取线程 A 更新后的共享变量 X 的值,此时线程 B 的本地内存的 X 值也变成了 1。

整体来看,这两个步骤实质上是线程 A 再向线程 B 发送消息,而这个通信过程必须经过主内存。JMM 通过控制主内存与每个线程的本地内存之间的交互,来为 Java 程序员提供内存可见性保证。

在执行程序时为了提高性能,编译器和处理器常常会对指令做重排序。重排序分三类:

1、编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。

2、指令级并行的重排序。现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。

3、内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

从 Java 源代码到最终实际执行的指令序列,会分别经历下面三种重排序:

sort-again

上面的这些重排序都可能导致多线程程序出现内存可见性问题。对于编译器,JMM 的编译器重排序规则会禁止特定类型的编译器重排序(不是所有的编译器重排序都要禁止)。对于处理器重排序,JMM 的处理器重排序规则会要求 Java 编译器在生成指令序列时,插入特定类型的内存屏障指令,通过内存屏障指令来禁止特定类型的处理器重排序(不是所有的处理器重排序都要禁止)。

JMM 属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。

现代的处理器使用写缓冲区来临时保存向内存写入的数据。写缓冲区可以保证指令流水线持续运行,它可以避免由于处理器停顿下来等待向内存写入数据而产生的延迟。同时,通过以批处理的方式刷新写缓冲区,以及合并写缓冲区中对同一内存地址的多次写,可以减少对内存总线的占用。虽然写缓冲区有这么多好处,但每个处理器上的写缓冲区,仅仅对它所在的处理器可见。这个特性会对内存操作的执行顺序产生重要的影响:处理器对内存的读/写操作的执行顺序,不一定与内存实际发生的读/写操作顺序一致!

举个例子:

example1

假设处理器A和处理器B按程序的顺序并行执行内存访问,最终却可能得到 x = y = 0。具体的原因如下图所示:

exam1-ans

处理器 A 和 B 同时把共享变量写入在写缓冲区中(A1、B1),然后再从内存中读取另一个共享变量(A2、B2),最后才把自己写缓冲区中保存的脏数据刷新到内存中(A3、B3)。当以这种时序执行时,程序就可以得到 x = y = 0 的结果。

从内存操作实际发生的顺序来看,直到处理器 A 执行 A3 来刷新自己的写缓存区,写操作 A1 才算真正执行了。虽然处理器 A 执行内存操作的顺序为:A1 -> A2,但内存操作实际发生的顺序却是:A2 -> A1。此时,处理器 A 的内存操作顺序被重排序了。

这里的关键是,由于写缓冲区仅对自己的处理器可见,它会导致处理器执行内存操作的顺序可能会与内存实际的操作执行顺序不一致。由于现代的处理器都会使用写缓冲区,因此现代的处理器都会允许对写-读操作重排序。

(编辑:衡阳站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读